03 - Code and Editors
Code
One of the biggest similarities AND differences between Quarto and RMarkdown is how it handles native code.
Quarto uses the {knitr}
engine just like RMarkdown to execute R code natively, along with many other languages.
Quarto can also use the Jupyter engine to natively execute Julia, Python, or other languages that Jupyter supports.
You can specify Jupyter to use defaults
Or a specific Python version
Or even a specific Jupyter Kernel!
knitr
code cellsThere’s a lot of knitr
options!
```{python}
#| label: fig-polar
#| eval: false
#| fig-cap: "A line plot on a polar axis"
import numpy as np
import matplotlib.pyplot as plt
r = np.arange(0, 2, 0.01)
theta = 2 * np.pi * r
fig, ax = plt.subplots(
subplot_kw = {'projection': 'polar'}
)
ax.plot(theta, r)
ax.set_rticks([0.5, 1, 1.5, 2])
ax.grid(True)
plt.show()
```
```{r}
Ctrl + Alt + I
(OS X: Cmd + Option + I
)Or use the Command Palette: Cmd + Shift + P
/Ctrl + Shift + P
materials/workshop/03-computation/penguin-analysis.qmd
Ctrl + Alt + I
tidyverse
and palmerpenguins
R packages and print the penguins
dataset with glimpse()
02:00
The mtcars dataset has 32 rows
The mtcars dataset has an average miles/per gallon of 20.090625
The mtcars dataset has an average miles/per gallon of 20.1
Jupyter
Pure Python/Julia Quarto documents via engine: jupyter
can also do inline code, but this requires the use of IPython.display.Markdown or the Markdown
package for Julia
materials/workshop/03-authoring/inline-code.qmd
04:00
All code chunk options at yihui.org/knitr/options/
If you’ve used RMarkdown before, you’re likely used to:
mpg cyl disp hp drat wt qsec vs am gear carb
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Quarto introduces the “hash pipe” in #|
mpg cyl disp hp drat wt qsec vs am gear carb
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
#|
```{r}
#| warning: false
#| fig-cap: "Air Quality"
#| fig-alt: "A ggplot2 with temperature by ozone levels along with a trend line indicating the increase in temperature with increasing ozone levels."
library(ggplot2)
ggplot(airquality, aes(Ozone, Temp)) +
geom_point() +
geom_smooth(method = "loess", se = FALSE)
```
You can mix and match or use only R Markdown or Quarto style knitr
options. However, note the difference between ‘naming’ of the chunk options, typically one.two
vs one-two
. The one.two
exists for backwards compatibility and you should focus on one-two
syntax.
fig.align vs fig-align
fig.dpi vs fig-dpi
This syntax is preferred because it aligns with Pandoc, which uses word1-word2
style
Chunk options included this way use YAML syntax rather than R syntax for consistency with options provided in YAML front matter. You can still however use R code for option values by prefacing them with !expr. For example:
#| fig-cap: !expr paste("Air", "Quality")
A special chunk! There can ONLY be one chunk named setup
. It typically is used to set up the default values for the entire document with knitr::opts_chunk$set()
and loading global R packages.
knitr::opts_chunk
defaultsList of 27
$ eval : logi TRUE
$ echo : logi TRUE
$ results : chr "markup"
$ tidy : logi FALSE
$ tidy.opts : NULL
$ collapse : logi FALSE
$ prompt : logi FALSE
$ comment : logi NA
$ highlight : logi TRUE
$ size : chr "normalsize"
$ background : chr "#F7F7F7"
$ strip.white : 'AsIs' logi TRUE
$ cache : logi FALSE
$ cache.path : chr "03-computation-editors_cache/revealjs/"
$ cache.vars : NULL
$ cache.lazy : logi TRUE
$ dependson : NULL
$ autodep : logi FALSE
$ cache.rebuild: logi FALSE
$ fig.keep : chr "high"
$ fig.show : chr "asis"
$ fig.align : chr "default"
$ fig.path : chr "03-computation-editors_files/figure-revealjs/"
$ dev : chr "png"
$ dev.args : NULL
$ dpi : int 96
$ fig.ext : NULL
List of 26
$ fig.width : int 10
$ fig.height: int 5
$ fig.env : chr "figure"
$ fig.cap : NULL
$ fig.scap : NULL
$ fig.lp : chr "fig:"
$ fig.subcap: NULL
$ fig.pos : chr ""
$ out.width : NULL
$ out.height: NULL
$ out.extra : NULL
$ fig.retina: num 2
$ external : logi TRUE
$ sanitize : logi FALSE
$ interval : num 1
$ aniopts : chr "controls,loop"
$ warning : logi FALSE
$ error : logi FALSE
$ message : logi FALSE
$ render : NULL
$ ref.label : NULL
$ child : NULL
$ engine : chr "R"
$ split : logi FALSE
$ include : logi TRUE
$ purl : logi TRUE
Some examples
Option | Description |
---|---|
fig-height: 4 |
Plots generated from this chunk will have a height of 4 inches. |
fig-width: 6 |
Plots generated from this chunk will have a width of 6 inches. |
dpi: 150 |
Plots generated will have a dots per inch (pixel density) of 150 |
echo: false |
Code will not be echoed (ie not shown) |
eval: false |
Nothing will be evaluated, but code still be printed |
cache: true |
Results will be cached, and chunk will not be run in subsequent renders, unless code is changed. |
message: false |
No messages will be printed |
warning: false |
No warnings will be printed |
include: false |
No ouputs/echo/messages/etc will be returned |
label: unnamed-chunk-23
|..............................| 83%
ordinary text without R code
|..............................| 85%
label: unnamed-chunk-24 (with options)
List of 2
$ fig.dim: num [1:2] 6 4
$ dpi : num 150
|..............................| 86%
ordinary text without R code
materials/workshop/broken-notebook
03:00
chunk
myChunk
my-chunk
mychunk1
(These will fail)
my_chunk
my chunk
```{r}
#| label: myPlt
#| eval: false
ggplot(mtcars, aes(x = disp, y = mpg,
color = factor(cyl))) +
geom_point()
```
Note that you when using named chunks you can’t alter the internal code, only the chunk options. This is necessary because you are referencing the initially defined code in that chunk.
mpg cyl disp hp drat wt qsec vs am gear carb
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
mpg cyl disp hp drat wt qsec vs am gear carb
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
mpg cyl disp hp drat wt qsec vs am gear carb
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Editors
.RProj
RStudio has deep integration with R, knitr
and Quarto
You should always be using a recent release of the RStudio IDE - especially for the Quarto features.
RStudio 2022.07
and beyond comes bundled with a production-stable release of Quarto, no additional install needed!
Quarto + RStudio provides a rich YAML auto-completion based on text.
## YAML Auto-completion
To find all the available options for a YAML section, you can use Ctrl + Space
knitr
auto-completionYou can use tab-completion inside knitr
chunk options for RMarkdown style or Quarto style as well.
auto-complete.qmd
02:00
materials/workshop/03-authoring/visual-editor.qmd
04:00
quarto preview notebook.ipynb --to html
Treat YAML as a “raw cell” in Jupyter - Jupyter doesn’t care about YAML, but it’s needed/used by Quarto
thomasmock$ quarto --help
Usage: quarto
Version: 1.0.36
Description:
Quarto CLI
Options:
-h, --help - Show this help.
-V, --version - Show the version number for this program.
Commands:
render [input] [args...] - Render input file(s) to various document types.
preview [file] [args...] - Render and preview a document or website project.
serve [input] - Serve a Shiny interactive document.
create-project [dir] - Create a project for rendering multiple documents
convert <input> - Convert documents to alternate representations.
pandoc [args...] - Run the version of Pandoc embedded within Quarto.
run [script] [args...] - Run a TypeScript, R, Python, or Lua script.
install <type> [target] - Installs an extension or global dependency.
publish [provider] [path] - Publish a document or project. Available providers include:
check [target] - Verify correct functioning of Quarto installation.
help [command] - Show this help or the help of a sub-command.